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Abstract: As a leading cause of death in women, breast cancer is a global health concern for
which personalized therapy remains largely unrealized, resulting in over- or under-treatment.
Recently, tumor stroma has been shown to carry important prognostic information, both in its
relative abundance and morphology, but its current assessment methods are few and suboptimal.
Herein, we present a novel stromal architecture signature (SAS) methodology based on polarized
light imaging that quantifies patterns of tumor connective tissue. We demonstrate its ability to
differentiate between myxoid and sclerotic stroma, two pathology-derived categories associated
with significantly different patient outcomes. The results demonstrate a 97% sensitivity and 88%
specificity for myxoid stroma identification in a pilot study of 102 regions of interest from human
invasive ductal carcinoma breast cancer surgical specimens (20 patients). Additionally, the SAS
numerical score is indicative of the wide range of stromal characteristics within these binary
classes and highlights ambiguous mixed-morphology regions prone to misclassification. The
enabling polarized light microscopy technique is inexpensive, fast, fully automatable, applicable
to fresh or embedded tissue without the need for staining and thus potentially translatable into
research and/or clinical settings. The SAS metric yields quantifiable and objective stromal
characterization with promise for prognosis in many types of cancers beyond breast carcinoma,
enabling researchers and clinicians to further investigate the emerging and important role of
stromal architectural patterns in solid tumors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Breast cancer is the most common cause of oncologic mortality in women, with over 600,000
people succumbing to the disease in 2018 worldwide [1]. The condition encompasses a
heterogeneous group of malignancies with a variety of locoregional behavior and distant
metastatic potential. This inherent variance in aggressiveness and outcomes calls for additional
markers to help personalize treatment strategies and minimize over- or under-treatment of patients
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[2,3]. Current efforts in the search for additional prognostication markers are primarily focused on
molecular and genetic characteristics of the tumors and their host environment. Several of these
assays, such as Oncotype Dx (Genomic Health Inc, USA), Prosigna (NanoString Technologies
Inc, USA) and EndoPredict (Myriad Genetics Inc, Switzerland), have yielded some advancements
in predicting recurrence risk in a subset of breast cancer patients [4]. However, these tests are
expensive [5] and their clinical utility could be improved [6]. As a result, there exists a significant
need for additional prognostic and predictive markers.
In addition to studying the cancer cells themselves, researchers have turned to the host

environment milieu of the tumor, known as the tumor microenvironment (TME) [7] as a potential
source of new biomarkers. The TME is composed of stroma, which is rich in various cellular,
molecular and structural components. Collagen and fibrin fibers within the stroma facilitate the
interplay of signaling pathways within the TME, and changes in their architectural patterns are
believed to reflect interactions between the tumor and its host environment. Preliminary research
has demonstrated that the amount of fibrillar stroma within the TME and the architectural patterns
of its fibers are linked to tumor progression and treatment response [8–12].
Initial attempts to assess stromal prognosticative potential examined the relative amount of

stroma and tumor, quantified via the tumor-stroma ratio (TSR). Increased fractional stromal
volume was linked to less favorable patient outcomes, such as shorter relapse-free periods and
increased patient mortality, even amongst different molecular subtypes of breast cancer [13–17].
Similar correlations have been found in several other solid tumors beyond breast cancer [18–20],
demonstrating the potentially important prognostic information of the relative abundance of
stroma. In addition to the amount, the architectural patterns of stromal fibers and the morphology
of their arrangements have been linked to prognosis [21–25]. Currently, a pathologist can
qualitatively categorize tumoral stroma architecture as either myxoid or sclerotic. The former
presents as sparse, unaligned chaotic collagen fibers in a basophilic amorphous material, while
the latter is characterized by long, organized and often densely packed fibers resembling stromal
patterns of normal tissues. The presence of myxoid stroma in the TME has been correlated with
increased patient mortality and more aggressive pathology in a variety of diseases such as ductal
carcinoma in situ (DCIS) [24], cholangiocarcinoma [22], pancreatic ductal adenocarcinoma [25]
and rectal cancer [23].
While such TSR and binary stromal categorization methods show promising prognostic

potential, both rely on microscopic evaluation of H&E stained slides by a pathologist. This
process is subjective and difficult to reproduce, causing inevitable intra and inter-observer
variability. In addition, the complex stromal morphology patterns are unlikely to be well captured
by a simplistic binary myxoid versus sclerotic classification scheme. Improved assessment of the
spectrum of stromal architecture thus calls for a reproducible, quantitative and continuous-scoring
method to enable improved stromal characterization and realization of its full prognostic potential.

We propose a novel stromal architecture signature (SAS) based on polarized light microscopy
(PLM) that quantitatively characterizes the stromal architecture and demonstrate its ability to
differentiate between myxoid and sclerotic stroma in unstained human breast cancer specimens.
Previous work has shown the ability of full Mueller matrix polarimetry to characterize breast
cancer samples by stage [26]. However, our optical imaging relies on a simpler rotating-crossed-
polarizers approach that yieldsmeasurement-geometry-independent imageswith excellent contrast
of birefringent structures such as stromal fibers [27]. These are then fed into a robust image
processing and statistical analysis pipeline to generate a quantitative signature of the spectrum of
architectural patterns exhibited by tumoral stroma. In contrast to pathologist-based subjective
assessments, polarimetric SAS methodology is quantitative and objective. On a practical note, the
proposed technique is suitable for unstained (potentially fresh or non-fixed) tissues, is fast (∼80,000
px/s, for example ∼3 minutes for a 1.6× 1.6 mm2 area at 80x magnification) and is inexpensive.
The method is thus directly implementable into most commercial microscopes and potentially
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into breast oncology clinical workflows and may be automated to avoid human/pathologist
intervention. Owing to the recently reported prognostic importance of stromal morphology in
many other solid tumors [22,23,25], broad biomedical applications beyond breast cancer are
envisioned.

2. Methods

2.1. Ethics

Institutional ethics approval was obtained from participating hospital institutions (University
Health Network and Sunnybrook Hospital, both in Toronto, Canada). The need for patients’
consent to examine the breast cancer histopathology samples was waived by the ethics board
due to the retrospective nature of the study and complete anonymization of personal health
information.

2.2. Samples

Surgically removed specimens of invasive ductal carcinoma (IDC), the most common form of
invasive breast cancer, from 20 patients with no prior chemotherapy or radiotherapy treatments
were imaged using the PLM technique described below. The samples were unstained, formalin-
fixed paraffin embedded and 4.5 µm thick. A variety of hormone receptor statuses were included.
Prior to PLM imaging, the unstained samples were chemically dewaxed to reduce possible
polarimetric signal artifacts [28]. Although the remaining formalin fixation can induce modest
polarimetric changes due to cross-linking (of the order of 10-20% as we have quantified previously
[28]), these will have limited effect on collagenous stroma contrast and the trends reported
below. Adjacent histological slides were H&E stained and scanned using 20x magnification for
pathologist assessment as the gold standard.

2.3. ROI selection and histology

From the 20 adjacent H&E slides, 102 regions of interest (ROI, 200µm x200µm) containing
tumor stroma were chosen. An experienced practicing pathologist blinded to the polarimetry
results then labelled each ROI. The following categories and their respective criteria were used in
the labelling: myxoid regions were defined as having over 33% myxoid stroma (n=33), sclerotic
regions as having no evidence of myxoid stroma (n=48), and mildly myxoid as having both
categories, but with less than 1/3 of the total ROI area exhibiting myxoid stroma (n=15). Regions
corresponding to biopsy sites, hemorrhage or necrosis were excluded (n=6).

2.4. Polarimetric imaging

The unstained samples were imaged using an AxioZoom V16 microscope (Zeiss, Germany),
chosen for its conveniently large working distance (5.4cm), with ample space for incorporating the
rotating crossed polarizers into the imaging setup as shown in Fig. 1. Light was transmitted through
the samples using a 310W LED (Illuminator HXP 200C (D), Zeiss, Germany) uncollimated
white light source passing through a filter centered at 630 nm. As previously described, the
simple optical setup consists of two crossed linear polarizers (Thorlabs, LPVISE100-A) on either
side of the tissue sample [27]. The polarizers were controlled by two motorized rotation mounts
(PRM1.MZ8, Thorlabs, USA) and rotated simultaneously while remaining perpendicular to each
other. Images were taken at 18 different angular positions, equally spaced between 0 and 90°.
For this study, the ROIs were imaged at 80x, with an approximate field of view of 1.6× 1.6 mm2

and resolution of 1.6µm. Images were also acquired without the sample to enable a flood field
correction.
To understand the essence of the technique, note that linear polarizers only allow light of

one linear orientation to pass. Thus, for two perpendicular linear polarizers with nothing in
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Fig. 1. Diagram of the PLM imaging system.

between, no light will pass through (to within the pair’s extinction ratio). However, barring any
other optical effects, if there is a birefringent material between the two polarizers, light will be
transmitted with the following intensity:

Intensity = sin2
(
∆nπt
λ

)
sin2(2τ) (1)

where τ is the relative angle between the analyzer polarization direction and the birefringent axis
of the material, ∆n is its birefringence, t is its thickness and λ is the light wavelength. Since all
values are kept constant over the different angular measurement positions, transmittance intensity
of a birefringent structure will vary with measurement angle according to:

Intensity ∝ sin2(2τ) (2)

with the maximum intensity occurring when τ = 45°. This angular modulation of signal
intensity is the important difference between this method and the conventional crossed-polarizers
approaches. In these, the detected intensity depends on tissue birefringent properties, in particular
their orientation, and on polarization optics orientation. In contrast, our method integrates
out the uninteresting measurement geometry effects (as per Eq. (2)) and furnishes tissue-only
intrinsic birefringent data. Specifically, signal processing over the different angular images allows
determination of the measurement-geometry-independent tissue birefringence properties, namely
its magnitude (first term of Eq. (1)) and orientation (second term) at each pixel. This simple
yet robust approach yields high contrast information-rich polarimetric images that are further
processed to furnish quantitative stromal metrics for pathology slide assessment.



Research Article Vol. 11, No. 6 / 1 June 2020 / Biomedical Optics Express 3250

2.5. Image quantification

In order to distinguish between regions composed of myxoid and sclerotic stroma, to provide a
continuous numeric score, and to develop the overall methodology, three individual metrics based
on the three different derived images [Fig. 2(d), (e) and (f)] were calculated before being combined
into a single composite. The metrics and their scores each seek to assess a particular morphologic
or optical property posited to differentiate between the myxoid and sclerotic stroma based on their
histopathological definition, namely: intensity that reflects the amount and thickness of fibers,
alignment which captures the degree of their local organization, and density which measures
how closely packed the fibers are. All metrics and their scores were determined from individual
pixel-level values, thus enabling parametric images of each [Fig. 2(d), (e) and (f)]. The two
former metrics have been previously described [27], and the third is introduced here to help
improve stromal architecture quantification.

2.5.1. Intensity (Fig. 2(d))

The first derived image represents birefringent intensity. Birefringence is an optical property of
asymmetric materials that have refractive indices dependent on the direction and polarization
of incident light. Collagen is birefringent, and therefore the transmitted light intensity varies
significantly with polarization measurement angle. Many other biological tissue types, including
tumor cells, are much less birefringent, if at all; thus, the transmitted light is substantially less
dependent on the measurement angle. The degree to which a particular region is birefringent was
hypothesized to be directly proportional to the amount of collagenous stroma present. To capture
this in a measurement-angle-independent image, the standard deviation of the light intensities
across the different angular measurements was calculated to obtain the maximum intensity range
(MIR),

MIR(i, j) ≡

√∑Z
z=1 (y(i,j,z) − ȳ(i,j))

2

z − 1
(3)

where z is the number of images in the stack (18 in this study), y(i,j,z) indicates the brightness at a
particular pixel (i, j) in a given angular image, z and ȳ(i,j) is the mean for all light intensity values
at position (i, j).
Note that unlike any one particular angular image in a stack (Fig. 2(b)) where the local

brightness depends on both tissue properties and polarization optics angle (see Eq. (1)), MIR(i, j)
and the resultant image of Fig. 2(d) are both polarization-angle-independent. Thus, the good
contrast between tumor and stroma visible on such images is indicative of intrinsic tissue
properties without the uninteresting admixture of the measurement system details. We posit that
sclerotic stroma would result in higher MIR values than myxoid regions, due to its organized
nature. In the ROI analysis below, the intensity metric is defined as the median MIR within the
selected ROI.

2.5.2. Alignment (Fig. 2(e))

Another important characteristic in the classification of stroma is the alignment of collagen
fibers. Myxoid stroma tends to have unaligned, randomly oriented chaotic collagen fibers while
sclerotic stroma exhibits fibrillar structures that are more aligned with their neighbors. Analysis
of the PLM angular image stack allows for the extraction of the optical axis, which in the case of
collagenous stroma is the long axis of the fiber itself [27]. The birefringence orientation for every
pixel was thus found by noting the angle of the polarizer which yielded the maximum in the
curves of Fig. 2(c). The degree of alignment quantifies the distribution of these fiber orientations,
whereby a 5× 5 pixel sliding window was applied to the pixel-wise orientation image to calculate
the mean angular difference (MAD) of the stromal directions. This window size was selected
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Fig. 2. Outline of the imaging and image analysis pipeline used to calculate the SAS. During
the imaging phase, both a) White light image of unstained slide and b) PLM cross-polarized
stack imaged at 18 angular increments of 5° between 0° and 90° are acquired. c) Light
intensity pattern for pixels corresponding to birefringent and non-birefringent regions (blue
and red symbols). The corresponding image regions from which these pixels were chosen are
highlighted with blue and red squares in b), d), e) and f). The former exhibit an oscillating
intensity pattern characteristic of a birefringent material while the latter, originating from less
birefringent structures such as tumor cells, exhibit no significant angular intensity variation.
The normalized theoretical intensity oscillation (Eq. (2)) is shown by the dotted-purple line.
From these intensity curves, three parametric images are derived. d) Maximum Intensity
Range (MIR) image, correlating with the maximum peak-to-trough height of curves in c) at
each pixel, indicated by the grey arrow in c). e) Mean Angular Difference (MAD) image,
where the intensity values are indicative of the mean difference in fiber directions over a 5× 5
pixel sliding analysis window (fiber directions were calculated from the angular location
of the maximum (indicated by the yellow arrow) in c). f) R2 image, where the intensity
values are indicative of the goodness-of-fit of c) to Eq. (2) (purple-dotted line in c)). g) SAS
image, derived from the product of the three preceding images. Pixels corresponding to
greater degree of stromal organization have higher SAS values indicated by lighter colors.
h) In parallel, an adjacent H&E stained slide is scanned at 20X and registered with the
polarimetry images for pathologist’s labelling (indicated scale bar same for all images). For
implementation see Code 1 [29].

https://github.com/blakempjones/StromalArchitectureSignature
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to contain enough pixels to enable reasonable statistics, but small enough to limit inclusion of
pixels from neighbouring structures.

MAD ≡
∑n−1

i=1
∑n

j=i B(i) − B(j)
n(n−1)

2

(4)

where n is the number of pixels in the sliding window and B(x) is the birefringence orientation at
pixel x. Here, x indicates the linear index of a pixel in the 5× 5 sliding window.

Regions that have a low mean angular difference suggest that the local structures have similar
axes of birefringence and are thus relatively aligned. As such, sclerotic regions are expected to
exhibit lower MAD values compared to the more disorganized myxoid stroma areas. The final
alignment score was calculated as the median MAD for a given ROI and then inverted, so as to
have highly aligned regions correspond to high values of this metric.

2.5.3. Density (Fig. 2(f))

Lastly, the density of collagen fibers in a region is an important aspect of stromal architecture
and often exhibits a significant difference between sclerotic and myxoid regions. To analyze
this, traditionally the fibers must be segmented from the surrounding tissue structures and then
their local density is quantified. Using the MIR image for this task is problematic, as the tissue
birefringence magnitudes can vary, making segmentation challenging. To overcome this varying
birefringence intensity challenge, an alternate approach based on a goodness-of-fit (R2) metric
was introduced. In our crossed-polarizer imaging methodology, a birefringent fiber will produce
a sinusoidal intensity pattern when imaged over a range of polarizer angles as shown in Eq. (2).
The goodness-of-fit between the observed intensity pattern and the theoretical dependence of
Eq. (2) separates birefringent structures (which have a high fit value) from non-birefringent
structures (which have intensity patterns that do not resemble Eq. (2)). Importantly, as the
intensity signals are normalized before this calculation, the R2 metric is independent of the MIR
magnitude, making it well suited for the segmentation of birefringent collagen fibres. The R2

metric is calculated by:

R2 ≡ 1 −
∑Z

z=1 (y(i,j,z) − f(i,j,z))∑Z
z=1 (y(i,j,z) − ȳ(i,j))

(5)

where Z is the number of angular images, y(i, j, z) indicates the brightness of a particular pixel
at a given image z, ȳ(i,j) is the mean over all images at (i, j) and f(i,j,z) is the expected value as
calculated by Eq. (2).

Using an empirically determined R2 value of 0.75 as a threshold, birefringent fibers could be
effectively segmented from the background. The collagenous stroma density is then calculated
by a ratio of the number of pixels with fibers present (R2 > 0.75) to the total number of pixels in
the analyzed ROI.

Density Score ≡
#pixels with R2>0.75

total # pixels
(6)

2.5.4. Combined SAS image (Fig. 2(g))

Based on the properties of sclerotic and myxoid stroma and thus their expected differences,
we introduce a quantitative signature whose value is directly proportional to the metrics of
birefringent intensity, fiber alignment and fiber density within a given region. Therefore, we
define the stromal architecture signature (SAS) metric to reflect this relationship:

SAS = Intensity · Alignment · Density (7)

Several different combinations of the three constituent information channels, includingweighted
averages, were examined to determine if they added additional classification power. To a first
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approximation, the simple product of Eq. (7) exhibited the best results. As our understanding of
the various elements of stromal morphology improves, the SAS definition may be modified to
allow for certain features to be weighed in a more sophisticated manner.

2.6. Statistical tests

Intensity, alignment and density parameters, and subsequently the SAS, were calculated for
each ROI. As a test of the separatory power of the SAS, we searched for a threshold value to
distinguish ROIs as myxoid or sclerotic; this was set to be the highest non-outlier SAS value for
myxoid (= 123, see Fig. 4(d) and discussion below). While suitable at this proof-of-principle
stage, future work will examine generalizability and overfitting issues that may be present with
such direct threshold selection. Initial efforts to assess this generalizability were done in the form
of 5-fold cross-validation. That is, the dataset was separated into five groups of approximately
equal size. A threshold was calculated using four of the five groups (as described above) and
then had its performance tested on the fifth group. This was done five times (so each group was
used as the testing set once) and performance metrics were noted for each trial.
Using the threshold SASth = 123, overlap between the two categories was determined and

statistical agreement with the pathologist labelling was assessed using a two-sided Fisher’s
exact test. The null hypothesis for this test is that there is no significant difference between the
populations of a 2× 2 contingency table. Therefore, the common p-value threshold (<0.05 level)
indicates that there are significant differences between the examined metric and the pathologist’s
classification (thus an unsuccessful metric); conversely, a higher p-value suggests a useful metric
whose outcome agrees with the pathologist.

3. Results

Representative SAS images of each stromal category are shown in Fig. 3, together with adjacent
histological H&E sections. Note the marked contrast between myxoid and sclerotic stroma in the
SAS images, and a ∼6X increase in SAS scores across the myxoid to sclerotic stromal categories.
Analogous calculations to Fig. 3 were performed for all 96 ROIs (20 different patient samples)
and grouped according to their true pathologist-assigned category labels. Figure 4 shows the
outcome of this analysis.
As seen in Fig. 4(a)–(c), each individual score provides a modest separation between the

sclerotic, mildly myxoid and myxoid categories, with significant overlaps. As expected,
the inclusion of these three complimentary information channels of stromal abundance and
morphology into the final SAS metric score results in significantly improved separation between
all groups (Fig. 4(d)) – note that all ordinate axes in Fig. 4 are independently scaled to maximize
data inclusion. Myxoid stroma, typically characterized by short, disorganized and sparse fibers,
exhibits low SAS values relative to sclerotic regions with more fibrous, organized and dense
stroma. Mildly myxoid regions occupy an intermediate position between myxoid and sclerotic
ones and yield intermediate SAS scores. Figure 4(e) presents a quantitative summary table of the
SAS results. The minimum, maximum and median statistics exclude outliers defined as lying
greater than ±2.7σ from the mean (outlier cases discussed below). Interestingly, in addition to
larger separation between the three groups, the use of the SAS metric resulted in substantially
reduced variance in the myxoid and mildly myxoid categories.
Apart from one outlier, all ROIs labelled as myxoid had SAS scores below 123. Using this

simple threshold value may prove helpful for classification and segmentation, for example to rule
out a particular region being myxoid (i.e., if SAS > 123, not myxoid). As this category is has
been linked to more aggressive disease with worse prognosis, future work providing automatic
assessment of breast cancer samples will prioritize the avoidance of false negatives in myxoid
stroma classification. That is, the consequences of misclassifying a myxoid region as sclerotic
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Fig. 3. A comparison of SAS parametric images (top row) and the resulting SAS scores
with H&E histology (bottom row), for representative regions of the three stromal categories:
a & d)=myxoid, b & e)=mildly myxoid and c & f)= sclerotic. The SAS scores, shown in
white text, were computed for the entire regions shown in a), b) and c) respectively. Note
the consistent trend of increasing SAS scores (higher values indicate more sclerotic stroma)
and the pathologist assessment categories. The slightly lower resolution exhibited by the
polarized light parametric images is due to 11× 11 pixel sliding window used to calculate
the SAS scores. Scale bar shown in d) is same for all images.

are potentially of greater clinical significance than the converse, as it could lead to an under
treatment of aggressive disease.
Figure 5 further highlights the modest ability of individual metrics, and the improved

performance of the composite SAS, to distinguish myxoid and sclerotic ROIs. Mildly myxoid
category was omitted in this analysis, in order to report the agreement with the ‘traditional’
binary labelling system that served as the ground truth. As summarized in the figure caption, we
used a simple threshold for the three individual metrics based on the same criteria as for SAS
(the highest non-outlier SAS value for the myxoid class). For the myxoid classification, the SAS
approach yielded the best result, with 97% sensitivity, 88% specificity and 91% total accuracy.
The 5-fold cross-validation analysis yielded sensitivity of 94± 8.5%, specificity of 88± 5.4%
and an average total accuracy of 90± 5.6%. By examining the Venn diagrams, particularly the
proportion of the overlapping regions, the capabilities of the three distinct polarimetry metrics
and the added value of their SAS composite can be visually appreciated.
To evaluate the statistical agreement between the two-class labelling performed by the PLM

metrics (Fig. 5(a-d)) and the pathologist, a Fisher’s exact test was used. Substantive differences
were found for the intensity, alignment, and density metrics (p-values < 0.05, < 0.01, < 0.01
respectively), indicating statistically significant disagreements with the pathologist assessment.
Conversely, the comparison between the SAS results and the pathologist yielded p=0.52, indicating
similar performance.
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Fig. 4. Box plots for the three intermediate metrics scores (left) and the final SAS score
(right) calculated for each of the three pathologist-labelled categories for this study. For
each box plot, the central line shows the mean, the box denotes the 2nd and 3rd quartiles,
the whiskers indicate the 1st and 4th quartile respectively, and outliers are demarcated by
symbols. Outliers on the top border of a graph indicate that they occur above the maximum
value on the axes but were compressed to enable visualization. a) Intensity scores b)
Alignment scores c) Density scores d) SAS scores. e) Table showing the SAS summary
statistics. The median corresponds to the position of the central line in d), while min and
max correspond to the positions of the bottom and top whiskers respectively; mean and
standard deviation were calculated with outliers included. Of note is the greater separation
between myxoid and sclerotic classes after incorporation all three metrics into the SAS score,
as well as the significant reduction in variance of the myxoidal categories as seen in d).
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Fig. 5. A visual and numerical representation of the overlap (orange) between myxoid (blue)
and sclerotic (green) ROIs classified by a) Intensity b) Alignment c) Density and d) SAS
scores. The numbers in the blue and green circles are the amounts of correctly identified
myxoid and sclerotic ROIs respectively; those in the middle orange regions indicate the
misclassifications, or, overlap of the two groups. Of particular interest is the substantially
improved separation afforded by the SAS score d), compared to any of the individual a)
– c) metrics. Alongside each Venn diagram is a confusion matrix displaying the correct
classifications (blue and green) and the misclassifications (orange). e) Table indicating the
sensitivity, specificity and total accuracy of each of the metrics and the composite SAS.
The thresholds were as follows: Intensity= 1255, Alignment= 0.490, Density= 0.486 and
SAS= 123, each calculated to maximize the sensitivity to myxoid stroma. Note the resultant
poor specificity and total accuracy for each of the individual metrics, and the significantly
better SAS results.
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4. Discussion

We have developed a novel methodology to assess and quantify architectural patterns of fibrillar
stroma in the tumor microenvironment, using polarized light imaging in a cohort of invasive
ductal carcinoma surgical breast cancer specimens. We also demonstrated that the developed
signature from this methodology has excellent ability to classify the stroma as myxoid versus
sclerotic when compared against the pathologist assessment. The PLM method of scoring
stromal architecture uses three distinct polarimetrically-derived quantitative images containing
morphological information (intensity, alignment and density) in order to provide a composite SAS
score. This score is quantitative and furnishes a continuous numerical spectrum that potentially
reflects the wide range of stromal morphologies, over and above the broad myxoid and sclerotic
categories. Importantly, the method is objective and pathologist invariant, resulting in robust and
readily reproducible objective results. By using a simple threshold (SASth = 123), we obtained
97% sensitivity, 88% specificity and 91% accuracy for myxoid stroma detection.

Figure 6 illustrates the shortcomings of the current binary classification approach, specifically
the wide spectrum of architectural morphologies within the myxoid and sclerotic tumoral stroma
not captured in this broad 2-class categorization. Given the apparent difference in morphology
between region (c) and (d), one could hypothesize that their structure would predict different
tumor behavior or patient outcomes despite both being categorized as sclerotic stroma using the
current H&E based pathology approaches. However, using the SAS one is able to readily and
clearly separate these two sclerotic stroma samples (SAS values of 158 and 814, respectively)
and study their potential difference in clinical behavior. This is information that is lost with the
traditional binary and subjective method of classification. Conversely, examining regions (b) and
(c) one may appreciate similarities in their morphology even though they are classified into two
separate, pathologist-labelled categories; these similarities are reflected in their relatively closer
SAS scores (103 and 158, respectively). These observations question the accuracy and utility of
the subjective binary classification scheme, and suggest a more insightful, objective and nuanced
stromal quantification is afforded by our methodology. In light of the recent emphasis on mining
the TME for useful prognosticators and treatment guides [8,9,11], the current subjective and
over-simplified system of labelling may inhibit future efforts to reproducibly probe the role of the
stroma in breast cancer.

Fig. 6. H&E stained IDC sample slides labelled as a) highly myxoid b) slightly myxoid c)
slightly sclerotic d) highly sclerotic by a pathologist. Calculated SAS scores are shown in the
middle row, and overall pathologist classification categories are on the bottom. Of particular
interest is the continuous numerical SAS spectrum of stromal signatures, potentially more
informative than the binary two-broad-categories subjective approach currently employed in
pathology.
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As shown in Fig. 5, a simple empirically determined threshold of SASth = 123 was sufficient
to yield excellent classification power between myxoid and sclerotic stroma as compared to the
gold standard of pathologist’s assessment. A recent report of automatic assessment of stromal
maturity yielded an accuracy of 84% [30]; our SAS result of 91% compares very well to this
finding. Encouragingly, the results presented here demonstrated the excellent separatory power
afforded by the SAS, which relied solely on a simple threshold, and could likely be improved
by employing more advanced machine learning methods that have recently emerged as useful
tools for histopathological analysis [31,32]. Future efforts will be put towards exploring these
options as well as moving to whole-slide processing to avoid the need for ROI selection. Further,
different strategies of defining the governing SAS metric from constituent images [Eq. (7)] will
also be explored.
Another noteworthy finding is the different range of SAS values within the sclerotic and

myxoid groups. Regions of myxoid stroma are significantly less heterogeneous in terms of
their morphological presentation as compared to sclerotic stroma. Figure 4 demonstrates this
difference in organization between the two groups, with the range of sclerotic SAS values being
∼5X greater than the myxoid range. This observation may or may not have a clinical or biological
significance but seems to be absent from the literature. The quantitative nature of the SAS enables
future work to better understand these differences and assess their significance. Interesting
questions such as this would likely not arise, nor be potentially answerable, using the current
subjective and categorical binary classification techniques.
As with any new methodology, the most informative cases for its refinement may be the

“mistakes”. We attribute the few SAS misclassifications (n=7 out of 96 ROIs) to two main
causes: edema and elastin. Illustrative examples of these are presented in Fig. 7. Edematous
regions (Fig. 7(a), red box) are characterized by well-defined collagen fibers that are separated by
interstitial fluid. Despite the fibers appearing bright on the intensity images, the lower density
of the fibers resulted in SAS values below the separating threshold. Although misclassified
compared to the pathologist’s labelling, the lower SAS score captures the clear difference that
one can readily appreciate by comparing the H&E for sclerotic stroma with (Fig. 7(a), red box)
and without edema (Fig. 7(c), black box).
Occasional SAS misclassification also seems to arise from the presence of elastin. Despite

often appearing fibrillar in nature, elastin is only very weakly birefringent [33] and thus does
not produce significant polarimetric contrast. The region demarcated with the red square in
Fig. 7(c) and (d) shows this lack of polarimetric signal from elastin. While in some sense this is
a limitation, the insensitivity of the PLM method to non-birefringent structures makes it well
suited for the study of collagenous stroma.

A potential shortfall of a myxoid – sclerotic “ground-truth” determined by a single pathologist
is the problem of inter-pathologist variability. Inter-pathologist categorization of myxoidal
stroma architecture is often quantified with a Krippendorf’s Alpha test which can range from 1
(perfect agreement between observers) to 0 (agreement comparable to random chance). Previous
studies have found inter-pathologist agreements to be poor (in the range of KA= 0.45) [34,35]
on classifying stromal architecture. However, these studies examined full slides and asked for a
categorical assessment of the abundance of myxoid stroma (i.e. low < 10% myxoid, intermediate
<30%, etc). Here, we have attempted to limit this issue by the use of smaller 200× 200µm regions
of interest specifically examining stromal areas. Future studies will have additional pathologists to
further explore the effects of this variability in the determination of the “ground truth”. That said,
the known suboptimal inter-observer variability in assessment of stroma architecture underscores
the need for technological advancements, such as our proposed objective methodology, that can
complement and potentially improve the pathologists’ examinations.
As alternatives to the proposed polarimetric methodology for stromal assessment, other

methods of connective tissue characterization may be considered. Second harmonic generation
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Fig. 7. Comparison of the H&E and SAS parametric images for two pathology-categorized
sclerotic regions that were SAS-misclassified as myxoid. a, b) A region of edematous
collagen (red box), labelled sclerotic by a pathologist but SAS-misidentified as myxoid.
Although the brightness of the fibers would suggest the correct (sclerotic) class, the relatively
low density reduces the resultant SAS score to the myxoid levels. c, d) A region containing
elastin (red box) that was erroneously identified as myxoid by its SAS score. For comparison,
note high SAS values shown for the collagen region (black box). Scale is the same across all
images.

(SHG) is one such method extensively used in research [36–38] and is currently considered the
gold standard for collagen imaging. SHG, however, needs a femtosecond laser and an advanced
microscope. The high cost and the technical expertise required to maintain it may not be feasible
for many institutions. Additionally, imaging time required for a single 200X200 µm2 (512px
X 512px) region of interest is at least 15min [39]. Conversely, the described PLM technique can
image a 1.6X 1.6mm2 region at comparable resolution (2048px X2048px) in under 3min and
can be significantly improved (tens of seconds) with a brighter light source (shorter exposure
times) and refined rotation timing. Unlike SGH, the simple nature of the PLM modular optics
enables direct incorporation into existing commercial microscopes. Coupled with robust signal
processing and image analysis, as described, the methodology of obtaining SAS scores should
thus be easily implementable into both research settings and current pathology workflows. For
the latter scenario, it is of note that the automated nature of the image processing combined with
the availability of the software (see Code 1 [29]) will ensure that scores can be computed without
direct pathologist oversight.

https://github.com/blakempjones/StromalArchitectureSignature
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Picrosirius red (PSR) staining is another alternative approach to collagen morphology analysis.
Recent studies have investigated stromal architecture using PSR-stained human DCIS breast
cancer cores and demonstrated that stromal characteristics were predictive of recurrence risk [40].
While imaging and analysis of stained slides is promising, the process of fixing and staining
is labor intensive, time consuming and can alter tissue properties irreversibly. While these
procedures are inevitable in the current pathology assessment workflow, their various artefacts
can create serious obstacles in computationally based classification systems [41]. Therefore, a
method that works on unstained, fresh tissues such as our proposed PLM SAS approach (see Code
1 [29]) can avoid these artefactual complications. Furthermore, the avoidance of tissue fixing,
imbedding and staining are advantageous for potential use in intraoperative settings [42,43].

5. Conclusions

Currently, there is no histopathological standard for providing a quantitative, objective char-
acterization of the stromal morphology in a patient’s tumor. Here we present a polarized
light-based method that addresses this unmet clinical need and yields a continuous score capable
of quantitatively representing the range of varying and complex stromal architectures. The
resultant stromal architecture signature (SAS) was compared to pathologist labelling of human
intraductal carcinoma breast cancer samples and excellent agreement was found. Refinements of
the presented methodology that can further improve its performance were outlined. The novel
PLM approach used to generate the informative stromal images is simple and compatible with
many commercial microscopes, enabling potential adoption for breast cancer examinations and
for many other types of solid tumors where the importance of the TME appears established.
As the role of the stroma in prognostication and possibly treatment planning becomes more
pronounced, such operator-independent, objective, and quantitative stromal characterization tool
will be needed. Further validation studies probing the link between polarimetrically assessed
stromal morphology and clinical disease characteristics need to be performed and are currently
commencing in our laboratory. The ensuing reduction of methodological variance in future
stromal quantification studies may elucidate robust connections between structure and function
as it relates to tumors of various types, their microenvironment and patient outcomes.
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